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Abstract

We prove that the gap in optimal value, between a mixed-integer
program in rationals and its corresponding linear programming
relaxation, is bounded as the right-hand-side is varied. In addition,

a variant of yalue iteration is shown to construct subadditive functions
which resolve a pure-integer program when no dual degeneracy occurs.
These subadditive functions provide solutions to subadditive dual
programs for integer programs which are given here, and for which the

values of primal and dual problems are equal.

Key words:

1) 1Integer programming
2) Cutting-planes

3) Convex analysis

4) Duality

5) Subadditivity
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THE VALUE FUNCTION OF A
MIXED INTEGER PROGRAM: II

by

C.E. Blair and R.G. Jeroslow

In this phpet, we continue our study, begun in [ 2 1, of the
value function of a mixed-integer program. This function G provides

the value G(b) of the program

‘inf ex + dy
(MIP) subject to Ax + By =0b
x,y>0

x integer

in variables x = ( xl,...,xr), y = (yl,...,ys), with right-hand-side
(r.h.s.) b = (bl""'bm) and matrices A, B and vectors ¢,d conformally
dimensioned. G(b) is defined only for b feasible, i.e., b for which

the constraints of (MIP) are consisteﬁt.

In [2], we emphasized bounds on G(b) [2, Theorem 2.1], a
structure theorem for G(b) [2, Theorem 3.3], and the extendability

of G(b) [2, Theorem 4.6]. Here our emphasis is on the difference




between G(b) and the value function L(b) of the linear programming

, relaxation (LP) of (MIP) (see (LP) below). We show that the gap in

value is finite (Corollary 1.3) and that in certain regions Sy- (defined

below) the gap function is subadditive (Theorem 2.6). Our investigation
of the gap function leads quite naturally to a subadditive dual program
A for (MIP) (Theorem 2.4), which places the subadditive functions into a

‘ more tractable class of functions than does an earlier subadditive dual :

(see [6]).

We also show that the subadditive functions needed in our dgal
programs can all be obtained by value-iteration, which replaces a
subadditive function Fn by an improved function Fn +1 that provides a
better value in the dual program, with finite convergence guaranteed

under many commonly-occurring hypotheses (Theorem 2.8).

Throughout our work, we have a standing assumption:

x (sa) A, B, b are matrices of rationals;

which was utilized also in [2 ]. For the pure-integer case (s = 0),

- this assumption (SA) takes the equivalent form

i, (sA)' A,b are matrices of integers

i | In addition, we assume throughout that G(0) = O and r > 1 if s = O,
i i‘a 3 . The assumption G(0) = O is known to imply that (LP) below hat a

b finite value if it i{s feasible ( see e.g., [6 ]). The assumptions
h | made here will be utilized below without explicit citation.

, : In what follows, we also use the notation A = [u(”] (cols) and
. ' B = [b(k)] (cols).




Section 1: Value Gaps and Quadratic Duals
We begin by stating a result (Theorem 1.2) which i:s useful in

what follows. The result depends on {2, Theorem 2.1 (2)] and requires
the following lemma, which is implicit in [7, Lemma 1]. We provide a
self-contained proof here, since it is very short; for a generalization

of the lemma below to multicriteria objective functions, see [7].

Lemma 1.1: Suppose 'that: z° is an optimum for the linear program

min dz
; (1) subject to Dz = h
z >0 (z = (zl,...,zp))

*
and z > 0 satisfies

(2) z; > 0 imples z;> 0 for j =1

seees3P

* %
Then if h' =Dz , z 1is optimal for the linear program

min dz
1’ subject to Dz = h'
z2>0

In addition, an optimum in the dual to (1) is also optimum
in the dual to (1)°'.

Proof: The program (1) has the dual
(3)

max Ah

subject to AD < d
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Let A° be an optimum to (3), so that the following complementary

slackness condition holds:

R e A Pty -

(%) ~ 2(d-2D) =0
From (2), (4) we obtain this version of complementary slackness:
@' 2(d-2D)=~0.

Now (4)' is widely known to imply that z* is optimal in (1)' .
In detail, from (4)' dz* = kobz* = koh’, showing that z* is optimal

in (1)' and A° is optimal in the dual to (1)'.
QIE.D.

Theorem 1.2: :
There is a constant 4 > 0, independent of b in (MIP), which

possesses the following property:
If (xo.yo) is an optimum to the linear programming relaxation

min c¢x + dy

(LP) subject to Ax + By =b ‘
3

x, y20

and (MIP) is consistent, there is an optimum (xI, yI) to (MIP) with

) | oty - &9 | <o

e

- .
Proof: Let x be the vector of "integral parts" of

(] * o * o
x, i.e, x_1 -ij_jforjtl,...,r. Put b' = Ax + By . By Lemma 1,

% &
(x , yo) is optimal in the program

min cx + dy
(6) subject to  Ax + By = b'
x, y2>0
x 1nteger’
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5.

since it is optimal when thé requirement "x integer" is dropped in

*
(6), and yet x does satisfy the integrality requirement. From [ 2,
Theorem 2.1 (1)] there is a solution (xI,yI) to (MIP) with

* .
M lahyh-awsclb-b |+
with C,D > O independent of b,b' . Using (7), we have

: I -1 o o * * , y
® |&.y) -y <]alyh - @D+ &Y - &, 9D |

~

<C|z(x;-l_x?_‘)a(j)l+l)+t .

Al

<c(j§1|a(j)|)+n+r

By taking A to be the r.h.s. of (8), which is clearly independent of b,

the Theorem is immediate.
Q.E.D.

In what follows, L(b) is the value function of the linear

relaxation of (MIP), i.e., L(b) is the value of the linear program (LP)

as a function of the r.h.s. b. Clearly, G(b) > L(b) when b is a

feasible r.h.s. for (MIP).

Corollary 1.3:

9) sup { | G(b) - L(b) | | b feasible in (MIP) } <+ =
Proof: From (5) and Theorem 1.2,
le® L) =] e &' - +c o -5 |
slells® ==+ lal Iy' -5l < lel +[ah) a<+e=

Q.E.D.




.
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It is worth noting that Corollary 1.3 implies

| ) -6") | <le® -L®) | +] L) -Le) | +]| L) -6k |

<SK|b-b | +2s, f.

where K is any constant for which

| L) -1 [<x[b-b [,

8 is the supremum defined in (9), and b,b' are feasible. This improves [2,
Theorem 2.1 (2)], in that the modulus associated with Ib-b'] can be taken
to be-that of (LP), if one is willing to use 2 § as a constant. Note,
however, that in a pure-integer program (s = 0) it may still be necessary
to retain a positive constant, if the modulus used is K of the linear
program (LP). A constant of zero can be employed for s = 0, if the ‘
modulus 1s K + 2 6, since [b-b’'| # O implies [b-b'| > 1 for integer

vectors b,b'.

For a function f: S = R, S any set, we define the epigraph

epi(£f) by:

(10)  epi(f) = { (y,x) | xeS and y > £(x) ]

For a set TS Rn, conv (T) respectively clconv (T) shall denote the
convex span resp. closed convex span of T. Compare with [10], [13].
Proposition 1.4:

(11) epi (L) = conv(epi(G))

Proof: Since L(b) < G(b) for b in the domain of G, and epi(L) is
convex due to the conéexity of the domain of L, the inclusion ( 2 ) in

(11) is clear.




o be it o bt ik e

To esegblish the inclusion ( € ) in (11), and thereby complete
the proof, let (z,b) ¢ epi(L), so that z > G(b). Let (x°,y°) be an
optimum to (LP), so that G(b) = cx° + dyo. When b is rational, we can assume
(xo, yo) is rational by (SA), so that (x°,y°) = (x*/D, y°) with x* >0
a vector of non-negative integers, and D > 1 an integer.
SinceL(Db) = DL(b), as one easily proves using Lemma 1.1,
(x*, y°D) is optimal to (LP) with r.h.s. Db, and since x* is integral,
we see that (x*, yOD) is also optimal to (MIP) with r.h.s. Db. Then

%*
G(b) = x + y°D = L(Db) = DL(b) < D z, giving (Dz, Db) ¢ epi(G). Since

.

(0,0) ¢ epi(G),
( bz, Db)/D + (0,0) (D - 1)/D = (z,b) ¢ conv(epi(G)).
For b irrational and (z,b)e epi(L), we also obtain (z,b)e epi(G)

by the continuity of L and the fact that b can be approximated by

rational r.h.s. Q.E.D.

We next present a result which, in Rockafellar's duality
framework [11], [12], can be construed as a dual program for the pure
integer program (IP), which is (MIP) for s = O:

min cx
(IP) subject to Ax =b
x > 0 and integer
Let a(i) denote the i-th row of A and let b1 denote the i-th

component of b. The quadratic Lagrangean for (IP) is defined (o be
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Theorem 1.5: Suppoée that (IP) is consistent.

8.

m
(12) L(x,A,p) = (c =AA)x +p & (ozix - bi)2 +A b
i=1

and a dual problem for (IP) is

(QD))‘ max inf  L(x,A,p)
P20 x20

x integer
where A = ( hl,...,km ) ¢ R" is a fixed vector.
Denote the value of (IP) by v(IP) and let v(QDl) denote the
quantity defined in (QD)A . It is immediate that V(QDA) < v(1IP),

since for any p and any A

(13) inf L(x,A,p) < inf {L(x,\,p) | Ax = b, x > 0 and integer}
x>0
x integer

= iaf {cx | Ax = b, x > 0 and integer} = v(IP)

(1) For any A ¢ _Rm;there is p(A) > 0 such that for 35 > p(\) we have

%*
(14) L(x ,A,p) = min L(x,A,p)
x>0
x integer
*
if and only if x is optimal in (IP). Furthermore, p(A) is

independent of the r.h.s. b in (IP). In particular, v(IP) = v(QDk) .

(2) Let A be an optimum to the linear dual
max Ab

(15) subject to AA< ¢




of the linear programming relaxation (LP) of (IP). Then if

p > G(b) - L(b), (14)for A = X holds precisely if~x* is optimal in

(IP).
Proof:

(1) From [ 2, Theorem 2.1(2)], thére is a constant ¢ 2> 0, independent
of b, for which

(16) | 6 -6 [ <e|b-br|

when b' is a feasible r.h.s. in (IP).
1 : Note that, if b = (bl,...,bm) and b' = (bi,...,b"n) are integer
vectors then

2 e 2
(17) | b-b | < & by -5")
i=1
‘where |b - b'I denotes the norm used in [2 1, specifically (see

[ 2, e (1.1)])

m
- ' = -
(18) | b blifllbi by |
Put p(A\) =1 + ¢ + I A | « Then from (16) and (17), we
have, for any vector x 2> 0 of integers and p > (1),
i i 2
9) L(x,A,p) = ex +A(b = Ax) + p ‘% (a'x - b))
. ; i=1

260®") +A(® -b") +p | b-b|
26() - ¢ |b-b'| - r| [b-b'] +p|b-0)
> G(b)

1f b' # b, where b' = Ax; while if b' = b, we have

b

R TP et U PSS TR



(20) L(x, A,p) = cx > G(b)

Now a non-negative integer vector x* is optimal in (IP) if and
only 1f b' = Db an;l cx* = G(b). Hence by (20) if x* is optimal,
L(x,A,p) = G(b); while if x* is not optimal, we have L(x,\A,p) > G(b)
by (19), (20). Therefore, (14) holds if and only if x"r is optimal
in (IP), as claimed.

Regarding the "particular," from (19) and (20) we have
inf {L(x,),p) | x > 0 and integer} = G(b) = v(IP) by (19), (20).
Sincé v(QDK) < v(IP), this shows that v(QD)‘) = v(IP).

(2) Suppose that p > G(b) - L(b). Let x > 0 be an integer vector.

If b' = Ax 1s different from b, we obtain

(21) LA, = (e-XAx+p I, - bpz % b

2 0 + p + L(b)
> G(b)
(In(21), we have used the fact that ¢ - AA >0 and b = L(b)). If
b' = b, we obtain (20).
Using (20),(21) as we used (19), (20) in proving the first part,
we establish the present claim.
Q.E.D.
Rockafellar obtained a result of the type Theorem 1.5(1) for

convex programs (see [ 12,Theorem 3.5]), Our result is of course

easier to prove if the vector x is bivalent or bounded in (IP).
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Theorem 1.5(2) is also more clementary than Theorem 1.5(1), since it
does not require the proximity results of [ 2], while still indicating
a chotce X of \ for which p(\) is likely to be smaller than for general
B : '
As a consequence of Theorem 1.5, the value of the "quadratic dual"

(Qb) . max max inf L(x,\,p)
AR" 550 x>0

x integer

is v(IP). Here the analogy to ordinary linear programming duality is

easier to see, since fixing p = O one easily establishes that the

program
22) inf L(x,\,0)
AeR x>0
x integer

= max 1inf L(x,\,0)
AeR" x>0

is the usual linear programming dual to (LP) for s = 0. However,

since A can be fixed in (QD) while still having v(IP) = v(QD)‘), the

dual (QD) actually has many features of a penalty method.

oty i



12.
Section 2: Subadditive Dual Programs

We recall that a function F is subadditive on a domain S if

(23) F(v + w) < F(v) + F(w)

is an identity for v,weS (see [4], [5], [8]). Typically, S is required

to have Ogs and to be closed under addition. In what follows, we take S
to be the set of all feasible r.h.s. for (IP), which is readily verified
to possess these properties. A particular class of subadditive functions

are those which are non-negative and bounded:

F(v) > 0 for all veS
(24) Z =4 F is subadditive on S
and sup {F(v)‘ves} <4+
We shall also need the concept of the upper directional derivative

(at zero) of a subadditive function F (see [5], [8]):

(25) F(v) = lim sup { FQAv)/A [ 7\\0+] :
We recall two results from previous work; the first can be

proven directly.

Lemma 2.1: (See [5]). 1f F1 and Fz are subadditive on S, so is

Fl + 1?2. In particular, for any subadditive function F and any

AeR™, the function G defined by

(26) G(V) = Av + F(v)

is subadditive on S.

L e MU S Ll g ol
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Lemma 2.2: (See {5]).

If G is subadditive on S, then

r 8
27 z 6@ + £ G6®yy, >cm
3=1 k=1

for any feasible solution (x,y) to (MIP).

We shall also need one more lemma.
Lemma 2.3: If F is a non-negative, subadditive function on S, and

§ > 0 is any scalar, then the function H defined by

(28) H(v) =min { F(v),6 }
is in the class T of (24).

Proof: Let v,weS. If F(v) > & or if F(w) > 8, (28) gives

(29) H(v + w) <8 < H(v) + HW)
as F 18 non-negative. If F(v) and F(w) are < §, then

(30) H(v+w) <F(v+w) <F(V) + F(w) =H(v) + HW).
Since the two cases (29), (30) are exhaustive of the possibilities,
H is subadditive. Clearly H is non-negative, and H is bounded by 3;

hence HeZ.
Q.E.D.

Theorem 2.4: Suppose that (MIP) is consistent.

Let A be any feasible solution for the dual

: max Ab
(DLP) subject to AA < c
5 AB<d

to (l.i’). Then the subadditive program

it i N 0 i
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E max Ab + F(b)

@) ' xaP +ra®y < SER e
] w® L Fe®) < T
E FeZ

has the vaiue v(MIP) of MIP, and moreover for any feasible solution

5
- (x,y) to (MIP) and any feasible solution F to (D}\), we have (27) for G
- as defined in (26).
L. Proof: The bound (27) is simply a consequence of Lemmas 2.1 and 2.2.
E\ This bound also shows that F(b) + Ab < v(MIP) for F feasible in (D)\),
: s
& as cady < ¢, and c6™) < a4 for a1l 3,k
It suffices to prove that there is a solution H to (D,) with
: Ab + H(b) > v(MIP). to this end, put
9 : 5 Ax + By = Vv,x,y >0
. (31) F(v) = inf (e=Md) x + (d = AB)Y | 04 integer

! F is subadditive since it is a value function (see [6 ]) and F is
3 non-nepative since ¢ - AA > 0 and d - )\B > O.

Let (xo,yo) be a feasible solution to (MIP} with

o - e T
% F(B) = (c = )A) x + (d - AB)y ( (x ,y ) exists by [9]). We have

v(MIP) < cx® + dyo and also

(32)  ex® + dy° = (cAA)x° + (d-AB)y° + AAx® + ABy®

= F(b) + Ab.

Set H(v) = min { F(v), F(b)}. Then v(MIP) < H(b) + Ab, as H(b) = F(b).

By Lemma 1.8, HeZ. We need only prove that H is a feasible solution to

(p.), and we are done.
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However, H(v) < F(v) for all v. Hence H(a(j)) < F(a(j)) < €y - ra(d

for all 3, and 56®)) < Fp @) < d - Ab® for a11 k, the 1acter by (25).
Indeed, H is feasible in (DA) 3
QcBaDc

As a consequence of Theorem 2.4, 1f we define a dual program (D) to
be (DA) with A treated as a variable, we again have equality of values

v(D) = v(MIP). Indeed, for any feasible solution A,F to D, since FeX

it {8 easy to show that A is a solution to (DLP), and Theorem 2.4
applies. The proof of Theorem 2.4 shows that, by chosing A = X , with
A an optimum in (DLP), we can take F in ([T) to have an upper bound equal
to the "“integrality gap" G(b) - L(b). This is the smallest bound
possible on F for any of the dual programs (D)‘).

Clearly, information on the gap function GP(b) = G(b) - L(b) is of
value. By Corollary 1.3, it is a bounded, non-negative function.

Example: Consider the pure-integer program

dn@ize- (x1+x2+x3 )
1 0 -2
(33) subject to x x,. + X, = b

xl 5 x2 /5 x3 > 0 and integer
for the three settings of b given by

1 -2

-1
$OF W,
1 5 6

(34) bV .
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For b = b(l), an optimum to (33) is (1,1,0), and this solution is
also the optimum to (LP); hence GP(b(l)) = G(b(IB - L(b(l)) = 0, For
b= b(z), an optimum to (33) and to (LP) is (0,1,1), and again GP(b(z)) = 0,
However, for b = b(3) an optimum to (LP) is (0,4,1/2), and an optimum to (33)
is (1,2,1). Therefore, GP(b(35=- 4+ 4 1/2 = 1/2, and the

subadditivity relation

(35) e < eed®) +crp®) - o

clearly fails, even though b(s) = b(l) + b(z) .

Despite the lack of global subadditivity, GP is subadditive in
certain regions that we now define. Put

(36) s = {bes | A is optimal in the dual program (DLP) to (LP)}

For any specific boes, there is some A optimal in (DLP), By Lemma 1.1,
X is still optimal in (DLP) for all beS such that b is a non-negative
combination of the columns which have positive variables in an optimal
solution to (LP) with r.h.s. b° « In specific, X is still optimal in
(DPLP) for any r.h.s. b for which the optimal linear programming basis

for r.h.s. b° is still feasible, and hence if such a beS then also besx- .

The preceeding remarks are intended to give an intuitive idea of
the nature and extent of Si' « Roughly speaking, S includes all those

feasible r.h.a; b which have some common optimal linear programming basis
which 18 non-degenerate for some r.h.s. Clearly, if Sx # § then Oesi

and sk is closed under addition, just as is true of S. However, si can

Maaie i & T AT . R HA St DA R g =
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be more extensive than the region in which one linear programming basis
is optimal. For instance, if there are dual non-degenerate linear
programming basic optima for some r.h.s. b, the corresponding » has S-

A
include both regions in which either basis is optimal,

More information on the sets Sx » @8 well as the important global
question of how they "fit together," is given in the next result. In

what follows, dim(T) is the dimension of a set T; faces of polyhedra are

are defined in [10], [13].

Theorem 2.5: Let o, B be optima in the dual program (DLP) for

(possibly distinct) r.h.s. b.

(1) conv(Sa) is a polyhedral cone, and conv (sa)ﬂ g - S,

(2) conv(Sa) N conv(sp) is a face ( possibly empty) of both conv(Sa)
and conv(sp) .

Proof: By the Finite Basis Theorem (see [10], [13]), the dual

polyh,_edron has a representation of the form
37) { A|rage,AB< d) = conv{v(l),...,v(o)} +core (wi,... v

We may assume O > 0., Hence the. linear form Ab is bounded

above aubject to X A< ¢, A B: d 1Ff and only (f
(38) vy e, 51,00

(these inequalities being vacuous if 0 = 0). When (38) holds, the

maximum of A b subject to these constraints is max {v(")b | 1 =1,...,0} .

kit asidbiin iR e S ki i




R e

T T T
g X oo

Cr et

-

ﬁ‘
L

18,

Therefore, o is an optimum in the dual program if and only if both (38)
holds and also
ab > Bb

39, w>vp , 1=1,...,0

(The inequality ab >pb is actually redundant here). ;
By the integrality hypothesis (SA), all the vectors v(i) ,w(j) in
(37) - (39) o San be assumed integral.

We now claim that conv(sa) is precisely the polyhedral cone Co: of

b described by (38), (39)01'

Since the defining inequalities (38), (39)0 of Ca are in
integral quantities, Ca = conv { bcca I b integral } . However, if

bcca and b is integral, (LP) has a rational optimum with rationals

R Tm—

having denominator D > 1 for an integral D, hence DbeS by Lemma 1.1.
Since Ca is a cone, we obtain ca = conv{ beca l bes } = conv(Sa), as

we claimed.

From this claim, if be conv(sa) N S, then bcca and beS, so indeed
bcsa .

Next, the claim shows that conv(s ) N conv(Sﬂ) is defined by (38),
(39)01 plus the equality
(40) ; ab = Bb
Now the equality (40) occurs as an inequality of (39)”, hence requiring
(40) will give a face (possibly empty) of Ca = conv(sa) s

Q.E.D,

ki o WS R R D D
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It follows from Theorem 2.5 that the polyhedral come C of all b
satisfying (38) (i.e., those b for which (LP) is consistent) can be
represented as follows. If d = dim(C), let a(1),...,0(p) be distinct
points among { v(l),...,v(a)] of (37) for which dim(conv(sa(i))) = d,

such that i # j implies S, # sa(j)' Then we have

1)

P
(41) c = U conv(sa

1=1 @’

and if 1 # j, then conv(sa(i)) n conv(Sa(j)) is a face of conv (S

a(i)) with

dimension not exceeding (d - 1).

Theorem 2.6:
If A is an optimum to (DLP), then GP is subadditive on Sr .
In fact, for beS{ we have

- = Ax + By = b, x, y >0
(42) GP(b) = min (c = AA)x + (d - AB)y

and x integer

Proof: Exactly as 1n’(31), (32), we see that if the minimum on the
r.h.s. of (42) is attained at (x°,y°), we have

(43) 6(b) = ex® + dy® = (c - XA)x® + (4 - AB)Y® + Wb .

For chi, we have L(b) = b, Using this and (43), we obtain
GP(b) = (c - ik)x° + @ - Kh)y°, which is (42), and we recall [6 ]

that value functions are subadditive. Q.E.D

g b Byt R - AMIBER
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We conclude with an alternate representation of the gap function
GP as the finite limit of value iteration applied to any "initial" non-
negative subadditive function F . F which does not exceed GP, and show
that, at each step of value iteration, the current subadditive function
Fn (see below) is “improved" (see Theorem 2.8). The specific value

iteration here is the one corresponding to a shortest-path problem in a

certain graph, as formulated in a dynamic programming context; we next
describe the graph, which is closely related to Gomory's "romd-qff-
problem" [4 ] and involves enumeration on the non-basic va;iabl'es of an
L.p. tableau.

Let the lipear programming relaxation of (IP) be solved as described
previously, and let A = [ u;v ] be partitioned into basic and non-basic

columns. Note that (IP) is equivalent to
min cub-o-(cv-cuA)xv
(Ip)’' subject to Xy + Xxv = b

Xy o Xy 2> 0 and integer

where A = U—lv and b = U-]'b. By dual optimality, we have y = cy - cUA > 0.

For notational purposes, we write the columns of A as follows:

(44) e [;(1)' ;(z)w.',-‘-(g)]

;.

vhere t = r - m >.0. Clearly, b > 0. Note that L(b) = ¢;B b = ¢,

In what follows, we assume be¢S, i.e., (IP) is consistent.

o et sodbe il i ot Amh.‘,~"‘ﬁj
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The node set P of the graph G = (P,E') consists of all vectors

veRm having a representation

t =B
(45) v=u+Zl Pj a
i=1

where the P, are integers and u is a vector of integers. As regards

b |
the edge set E of G = (P,E), a directed arc (v,w) exists for v,weP

if and only if either

(46a) v-:(j)+w for some j = 1,...,t
or :
(46Db) v=e + w for same unit vector e k=1l,...,m.

In (46a), the length of this arc is Vj’ the j-th component of y . 1In
(46b) , the length of this arc is zero. (If multiple arcs exist from
v to w, these can be replaced by one possessing minimum length). Clearly,
the set P is a group under addition and beP.

In addition to nodes and edges, there is a distinguished subset
T & P of the set of nodes P, consisting of those ueP which are vectors of
non-negative integers. Clearly, T # P, beP, and there is a path from beP
to T, since if (xu*. xv*) is a feasible solution to (IP), then
b= x; + Axv* shows beP and ){; =b - va* describes a path from b to
x; ¢ T. More generally, there is a path from U—lch toT if and only
if (IP) is consistent with r.h.s. v.

Let LH(v) be the length of a shortest path from v to T, for veP,

where we set LH(v) = + @ {f no path exists from veP to T.
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Let X be the optimum in the linear dual to (IP)' . The next

result is elementary, and we omit its proof.

- -1
Proposition 2.7: 1f ch{ then G(v) = Av + LH(U "v) and

(47) W ) = GP(v)

The following is a value-iteration scheme which begins at an
"initial function" Fo = F defined on P. Given F , we obtain
n
Fn+1 by
o, ’ if veT

8 F =
@8) a+1 V) i Yj +F (v - ;(J)) } 3 1f véT
In what follows, for two functions F and G, we shall write
F < G to abbreviate F(v) < G(v) for all veP.
Recall that a function F is subadditive on P if
(49) F(v + w) < F(v) + F(w) for v,weP.

See also [4], [6], [8]. 3

Theorem 2.8:

If Fo = F is a subadditive function, and 0 < F < LH then every

Fn defined by (48) is subadditive and Fn < LH. Also,

(50) F,< Fi S FyS oo
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If, in addition, the vector y is strictly positive, then for

some finite N we have

(51) Fp(v) = LH(V)

whenever vcsx- .

Proof: We show Fn < 1H by induction on n. For n = 0, this is an

hypothesis. To go from n to (n+l), if veT then F . (v) = 0 = LH(v),

n+l

while if v{T then by (48) and Fn < 1H

(52) Fa® < min {y +m(v-aP)} = wm

T j=l,...,t ]

Fn is non-negative for n = 0 by hypothesis. To go from n to
(n+l), 1f veT then Fn+1(v) = 0 while by (48) for v{T we have by

induction
(53) M =y +F@-ad)20+0-0

for at least one index k = 1,...,t . Hence, all Fn are non-negative.
Fn is subadditive for n = 0 by hypothesis. To go from n to

(n+1), we first use the hypothesized subadditivity of Fn to prove

(54) F_ . .(v) . Fn(v)

n+l

If veT, then 0 = LH(V) > Fn(v) >0 and F_ .(v) = 0 by (48), hence

n+l
(54) holds. 1If v*’l‘, then since v = -a-(j') + (v - ;(j)) for § = Lyeeesty

subadditivity of an gives
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(55) F o sF @D+ r v -39)
_<_yj+1?n(v-i'(j)) P R B

using Fn(;(j)) < I.H(-a-(j)) _<_vj, j=1ly...4t. Now

(48) and (55) give (54).
Using (54), and supposing Fn subadditive, if v + weT then

Fn+1(v +w) =0< Fn+1(v) + Fn+1(w) since Fn+1 is non-negative.

However, if viw {T, then by (48) we have

(56) Fn+1(v + w) Syk + Fn(v +w - ;(k))

€ N # Fn(v -Zk) + F (W)

= Fn+1(v) + Fn(w) < Fn+1(v) + Fn+1(w) .

In (56), we have assumed v{T WLOG ( for v,weT implies v + weT)

= i (9]
and have chosen k so that Fn+1(v) =Yyt Fn(v a' ') by (48).

Clearly, (56) shows that Fn+1 is also subadditive and completes our
inductive proof that all F are subadditive. Then (50) follows
since (54) is implied by the subadditivity of Fn'
Let us now assume, in addition, that y is strictly positive,
and let ¢ > 0 be chosen so that 'Yj >¢ for j=1,...,t. We now prove

by induction on n that

Tl 7 R e A g i R o o AP
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(7) ) Fn+1(v) > min { ne, LH(v) } .

For n = 0, (69) follows since Fo =F>0. To go fromn to (n+l), if
veT then Fn+1(v) = 0 and LH(v) = 0. If VfT, then by (48)

8) B ) =y +F (v -2

for some k = 1,...,t. In the event that E Ay = :(k))?_ (n-1)¢, we

have from 68) and Y > ¢ that Fn+1(v).2 min { ne, LH(v) }. On the

other hand, if Fn( v - ;(k)) > LH(v - ;(k)), we have from (58)

69) M > min {y, + W - a3} = wm

F
i j=1,...t 3

> min {ne, LH(V)]} .
This completes our proof of (57).

Let N be chosen to that Ne > A, where A is the £.h.s. in (9)

of Corollary 1.3. By Proposition 2.7 , if v is a feasible r.h.s. tneu
LH(v)

GP(v) < Ne, so min {Ne, LH(v)} = LH(V). As Fy < LH, (57) gives

LH(v) for v feasible, and (51) holds.

Fy(v)

Q.E.li.

December 10, 1976
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